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Information storage and retrieval is essential for all life. In biology,
informationis primarily stored in two distinct ways: the genome, comprising
nucleic acids, acts as afoundational blueprint and the epigenome,

consisting of chemical modifications to DNA and histone proteins,
regulates gene expression patterns and endows cells with specificidentities
and functions. Unlike the stable, digital nature of genetic information,
epigeneticinformationis stored in a digital-analog format, susceptible to
alterations induced by diverse environmental signals and cellular damage.
The Information Theory of Aging (ITOA) states that the aging process is
driven by the progressive loss of youthful epigenetic information, the
retrieval of which via epigenetic reprogramming can improve the function
of damaged and aged tissues by catalyzing age reversal.

Over the past three decades, the field of aging research has made
substantial strides, reaching a stage where we now possess a basic
understanding of the underlying mechanisms that drive the aging
process. Knowledge has extended toinclude techniques for quantifying
aging, deceleratingits progression and, insome cases, evenreversing
aspects of aging. At least twelve hallmarks of aging have beenidentified,
including aloss of stem cells, reduced mitochondrial function, impaired
protein and energy homeostasis, telomere shortening and increased
cellular senescence'”. But what causes these changes to happenin the
first place? Is there an upstream process that drives them? Based on
new findings linking yeast aging to mammals, we attempt to answer
these questions and present a unifying hypothesis.

Atitsessence, lifeisinformation. There are two main ways biologi-
calinformationisstored. Oneisinthe form of nucleicacids, with RNA or
DNA encoding ‘digital’information as strings of nucleotides. The other
is ‘digital-analog’information, encoded by the epigenome, acomplex
system of transcriptional networks, RNAs, DNA loops, DNA-binding
proteins and chromatin modifications, which, together, control gene
expression’, cellular identity, DNA repair and responses to the cellular
environment* (see Box 1 for definitions).

Amajor problem with analog-based information storage systems,
whether electronic or biological, isthat they are inherently susceptible
to noise, which can obscure the original message. Biological analog
information can easily be lost over time, as it is read, copied and dis-
rupted by damage to the cell’. In 1948, a fundamentally important
mathematical solution to preventing information loss was elucidated

by communications engineer and mathematician Claude Shannon. In
the communication of information, Shannon stated that asignal is sent
by asender to areceiver, during which noise can obscure the original
signal. To preserve information during copying or transmission, Shan-
nonintroduced an ‘observer’ who has access to what we, today, would
call a ‘backup copy’. This observer sees both what is sent and what is
received, notes any errors that occurred in transmission, and sends
correction data to the receiver to restore the message to its original
and true form, similar to how the internet and TCP/IP work to ensure
all the original data survive transmission.

Based on results pointing to a role of epigenetic information loss
in the aging of yeast and mammalian cells, and the observation that
epigeneticinformation recovery exhibits potent rejuvenation, we apply
Shannon’s concepts to biology and formulate the ITOA (Fig. 1a), a theo-
retical framework to explain the underlying causes of numerous aging
hallmarks®™. In this Perspective, we explore the concept of the ITOA,
which posits that the aging process is propelled by the progressive loss
of cellularinformation, primarily in the form of epigeneticinformation,
resulting in the erosion of cellular identity'". This information can be
restored via partial epigenetic reprogramming, a system that may have
evolvedearlyinlife’s history torepair and rebuild damaged organs and tis-
sues. TheITOAis attractive because, unlike the ‘somatic mutation theory
of aging’?, it explains why different individuals display similar aging
changes, even though they start out with individually unique genomes
and accumulate mutations essentially randomly. One of the moreinter-
estingimplications of the ITOA is the potential existence of arepository
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BOX1

Definitions

Nucleosome: 147bp of DNA wrapped around a histone octamer,
comprising two H2A-H2B dimers and one H3-H4 tetramer.

Chromatin: A nucleosome-protein complex that packages
3-m-long DNA into a nucleus of 1-5um.

Euchromatin: An open and transcriptionally active chromatin state.

Heterochromatin: A condensed and transcriptionally silent
chromatin state.

Biological digital information: A set of discrete sequential values,
which in biology is encoded by sequences of nucleotides.

Biological digital-analog information: A continuous range of values,
which in biology is primarily encoded by epigenetic modifications,
protein-DNA interactions and the three-dimensional structure of
chromatin, they are based on the digital genetic information but
influenced by environmental signals and cellular damage.

Epimutation: Heritable alterations to the epigenome, including DNA
and histone modifications and chromatin structural changes.

Exdifferentiation: Loss of cell identity caused by the introduction
of epigenetic noise leading to epigenetic drift that disrupts gene
expression. Also known as dysdifferentiation.

Partial reprogramming: The use of reprogramming factors to
partially reverse the age of cells without them becoming stem cells
or otherwise losing cellular identity.

TAD: A structural unit of chromatin characterized by high
interaction frequency within the domain and lower frequency
across different domains, 50kb-2Mb in size.

Rejuvenation: The process of restoring an aged cell or organism
to a youthful state, which involves reversing the effects of aging,
damage or deterioration, often leading to improved physical
function.

Yamanaka factors: Four nuclear transcription factors, OCT4, SOX2,
KLF4 and MYC (OSKM), that can turn a somatic cell into an iPSC and
are canonical reprogramming factors.

DNA methylation clock: A set of DNA CpG methylation sites whose
methylation status can be used to predict chronological age or
mortality risk.

of youthful epigenetic information within each cell that enables gene
expression to be restored such that cells regain their cellular identity.
Based on recent discoveries demonstrating epigenetic age reversal in
mammalian tissues and the resulting increases in tissue function and
lifespan, we discuss directions for the development of epigenetic reju-
venationtherapiestotreatinjuries, age-related diseases and aging itself.

Epigeneticinformation loss: a cause of aging in eukaryotes?
The somatic mutation theory of aging states that aging is due to the
accumulation of mutations that change the amino acid sequence of

proteins and gene expression patterns™. In support of this theory is
the correlation between lifespan and mutation rates of mammals®.
Moreover, DNA repair defects are seenin some syndromes that mimic
premature aging, such as Werner syndrome and ataxia telangiecta-
sia"*, and the artificial introduction of high-dose DNA breaks triggers
premature aging in mice” (Fig. 1b). These studies, however, do not
distinguish whether the underlying causes are due to changes in the
genome or the epigenome, asboth canbe triggered by DNA damage’.
Although mutations do occur and can affect the aging process, there
is growing evidence that epigenetic changes might be primary. As
examples, yeast cells accumulate less than one mutation per lifespan
but still age"; humans with increased mutation burden and cancer risk
sometimes do not exhibitany features of premature aging'®; similarly,
inmice, changes to the epigenome caused by low-level non-mutagenic
DNA breakage (which ostensibly does not alter the genome or cause
genotoxicstress)”* accelerate aging-like changes, including increased
DNA methylation age, age-related transcriptional changes, physiologi-
cal changes and diseases, all reminiscent of aging'’; and in numerous
mammalian species, epigenetic drift during aging is remarkably similar
across many loci, enabling the accurate development of universal epi-
genetic clocks”*’. Moreover, in mammals, a lower rate of epigenetic
drift correlates with a greater maximum lifespan®. Other reasons for
suspecting an epigenetic cause of aging include the observations that
identical mice and human twins can age at different rates and that mam-
mals cloned from old somatic cells can live healthy, normal lives®**.
More recently, the observation that old cells and tissues can be epige-
netically reprogrammed to a more youthful state to achieve lifespan
extension without apparently reversing mutations®* argues that much
of aging has a nongenetic origin.

Formulated by Sinclair and Oberdoerfferin2009, an early form of
the ITOA was called the ‘relocalization of chromatin modifiers (RCM)
hypothesis’,inwhich chromatin factors move away from genes to DNA
breaksites in response to DNA damage signal and fail to return®, result-
ingin the progressive loss of youthful gene expression patterns, espe-
cially at hotspotsincluding developmental genes and transposons®°.
Thisstudy revealed that DNA damage is a driver of epigeneticinforma-
tionloss inmammals and proposed this as a cause of mammalian aging.

Of the many types of DNA damage, one that is linked to aging
more than all others is the DNA double-strand break (DSB). Because
unrepaired DSBs are often lethal to the cell, the reaction to a DSB is
swiftand genome wide. It begins with a DNA damage signal that recruits
the epigenetic regulators—including SIRT1, SIRT6 and HDACI1—to the
DNA break site, where they facilitate the repair process by modifying
chromatinand recruiting other DNA repair proteins suchasRAD51and
NBSI1 (ref. 6). Once DNA is repaired, these dual-function chromatin fac-
torsreturnto their original genomic locations to restore the previous
pattern of gene expression. Over time, however, after cycles of damage,
recruitmentand return, not all the epigenetic regulators find their way
back to their original loci, progressively altering the epigenome and
changing gene expression. The ITOA posits that cellular responses to
damage areasource of chromatin alterations and epigenetic dysregu-
lation that make cells more susceptible to DNA damage, setting up a
positive feedback loop that accelerates the gene expression changes
thatdrive aging™.

Theinitial ideathat DSBs lead to the loss of epigeneticinformation
stemmed from genetic studies on aging in budding yeast®®. Research
by Guarente and his team pinpointed ‘silent information regulators’
(SIRI-SIR4) as genes that control the mating type or gender of yeast
cells. Not only that, but they also mend broken DNA and, when over-
expressed, prolongthe yeast’s replicative lifespan. Of these, SIR2is the
most conserved. It encodes an NAD*-dependent histone deacetylase,
which acts as a DSB repair factor, bolstering genome stability***°. As
cellsgetolder, anabundance of DNA breaks, mostly at repetitive DNA
loci such as the ribosomal DNA (rDNA), causes a protracted absence
of Sir2 from silent mating-type loci®'. This shift causes cells to express
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Fig.1| The ITOA. Biological information encoded in the genome and epigenome
require different modes of transmission and preservation. A core concept of
our theory is that the progressive loss of epigenetic information over timeis a
key driver of aging, and such information loss is reversible. a, Loss of epigenetic
information during aging. Epigenetic information is laid down during embryonic
development and s required for cells to maintain their identity and function.

In contrast to mutations, which are caused by DNA damage, epimutations can
arise from many types of cellular stress, including DNA DSB, viral infection'*’
and physical or chemical damage''?”. These stresses induce the relocalization

of chromatin modifying proteins (RCM)®, alter histone and DNA modifications™
and deregulate gene expression, particularly at developmental genes®.
Fortunately, the loss of epigenetic information appears to be reversible by
triggering an epigenetic reset system. Similar to Claude Shannon’s ‘observer’,
cells retain a ‘backup copy’ of youthful epigenetic information that can be

accessed in adult tissues by expressing certain embryonic genes such as Oct4,
Sox2, KIf4 (0SK) and Myc (Mycis dispensable)". These genes initiate a reset
program that involves the activity of epigenetic modifiers to restore gene
expression and function, essentially operating as Shannon'’s correcting device.
The figure frame draws inspiration from Shannon’s 1948 work, ‘A Mathematical
Theory of Communication”. M, youthful message; M’, aged message. b, Loss

of geneticinformation during aging. Genetic information is replicated during
celldivision, with minor errors arising from imperfect DNA polymerase activity
and major errors stemming from DNA damage. The cell can restore original
geneticinformation by duplicating the non-mutated copy of alocus, so long as
the cell canidentify which s the original (homologous recombination repair).
Loss of geneticinformation could lead to progeria and cancer, and gene editing
technologies have shown promise in repairing mutations and stopping disease
progression™ '+,

both mating-type genes simultaneously, rendering them sterile, a
hallmark of yeast aging®’. This mechanism might have evolved to
temporarily suspend a cell’s mating capabilities while DNA damage is
being addressed®. The rDNA also gives rise to extrachromosomal rDNA
circles, which amplify and sequester the Sir2 enzyme as its abundance
declines with age due to proteolysis®. Accordingly, an extra copy of
SIR2 (ref. 33), or the pulsed overexpression of SIR2 (ref. 14), extends
yeast lifespan by 30-82%.

Similar to yeast, mammalian Sir2 homologs, SIRT1, SIRT6 and
SIRT7, move to sites of DNA damage to assist with DSB repair, caus-
ing the ectopic transcription of hundreds of genes, satellite repeat
RNA and transposons that can increase inflammation®?** (Fig. 2).

Because the epigenomic landscape is not completely reset each time
chromatin modifiers leave their post, epigenetic noise is introduced,
leading to aloss of cellular identity and cellular senescence'®***. Asin
yeast, the RCM process is thought to have evolved to coordinate gene
expression with DNA repair®.

The RCM concept is by no means limited to sirtuins. In recent
years, other proteins have been implicated in this age-related loss of
epigenomic information, including PARP-1, HDAC1, Wnt, the REST
complex, the Polycomb repressive complex 2 (PRC2) and DNA meth-
yltransferase (DNMT) 1 (refs. 36-39). Abundant evidence supports
this idea, including observations that: (i) DSBs accelerate the DNA
methylation clock'; (ii) increased expression of DNA repair genes is
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Fig.2|The epigenetic landscape of development, aging and rejuvenation.

In the original Waddington landscape metaphor™°, valleys represent cell-type
specificity, starting with a pluripotent cell at the highest point and ending at

the lowest point when a differentiated state is reached. During development,
acomplex set of epigenetic changes, including DNA methylation and
posttranslational histone modifications, dictates patterns of gene expression,
providing cells with a defined cellular identity™. By extending this landscape
forward to include post-developmental events, we can represent changes to cell-
type specificity that occur during aging. Distinct from another theory suggesting
agingis anintrinsic feature of the developmental program'®, the ITOA posits
that DNA damage and various cellular insults lead to temporary alterations in the
epigenetic landscape thatinduce a specific pattern of gene expression aimed at

enhancing cell survival. These changes, however, are not fully reset

after insults, leading to the landscape becoming eroded over time and
cellularidentities drifting away from their original state of differentiation
a process called exdifferentiation or dysdifferentiation®*'*, For reasons that are
unclear, developmental genes are particularly susceptible to deregulation. The
resulting accumulation of epimutations reduces the function and resilience of
cellsand tissues', the rate of which negatively correlates with maximum lifespan
in mammals®. Partial epigenetic reprogramming restores the epigenometoa
younger state without erasing cell identity, perhaps due to robustness of certain
epigenetic marks such as the methylation of cell-type-specific enhancers'**,
thereby restoring lost functions, reversing age-related diseases and extending
maximum lifespan®.

10,34
’

correlated withan increased lifespan among species*’; (iii) DSB repair
efficiency correlates with longevity across different rodent species; (iv)
SIRT6 is more activeinthe naked molerat*, arodent species known for
its highly stable epigenomic landscape and exceptional longevity*;
and (v) the overexpression of dSir2/SirtI and Sirt6 extends lifespanin
flies and mice* .

The initial yeast studies led to the ITOA, which states that distur-
bancesinthe epigenome, termed ‘epigenomic noise, haveacritical role
inaging, affecting not just yeast but also multicellular organisms’. The
theory posits that aging may stem from an evolutionary mechanism
designed to balance both genetic and epigenetic reactions to cellular
damage known as the ‘survival circuit”. Over time, this can disrupt gene
expression networks and result in the loss of epigenetic information.
The theory encompasses the idea that there are hotspots for gene
dysregulation caused by DNA breaks and other threats to survival,
especially developmental genes”.

TheITOA isalso consistent with antagonistic pleiotropy, an evolu-
tionary aging theory proposed by George Williams*®, which states that
an adaptive, beneficial process that enhances fitness and reproduc-
tion in young organisms is detrimental later in life. RCM is clearly an
adaptive mechanism given the recruitment of the sirtuins to the DNA
damage site requires DNA damage checkpoint signaling including
y-H2AX and Mecl or ATM*¥. The recruitment of chromatin factors to
DNA breaks may have evolved to keep young cells alive during adversity
but, over time, disrupts the epigenome and drives aging.

Plasticity of the epigenome and aging

The ITOA, based on Claude Shannon’s work, has a surprising corol-
lary. Ifinformation loss is the cause of aging, is there a backup copy
that can be used to reset the cell? In the animal kingdom, numerous
examples provide evidence that aging is not only epigenetically driven
butalsoreversible. Fertilization and the early stages of embryogenesis
reset the biological age of the germ line for subsequent generations

without correcting somatic mutations*®. Cloning also shows that age
canbereset:in1958,John Gurdonand colleagues cloned adult frogs by
transferring the nucleus of an adult frog cell into an enucleated egg®,
and these cloned frogs went onto live anormal lifespan. Gurdon’s work
was extended to larger animals, with Dolly the sheep being perhaps
the best-known example®. Since then, dozens of cloned mammals
have been generated and found to live a normal, healthy lifespan®>,

In 2006, Shinya Yamanaka and his research team identified four
nuclear transcription factors, OCT4, SOX2, KLF4 and MYC (OSKM),
capable of reprogramming somatic cells into induced pluripotent
stem cells (iPSCs). These iPSCs are notable, not only because they
can be coaxed into numerous cell types, but also because they have
an epigenetic age of zero and display rejuvenated characteristics’"*
(Fig. 2). Expression of the four Yamanaka factors plus two others,
Nanog and LIN28, reprograms senescent and centenarian fibroblasts
into iPSCs with the signature of young cells, characteristics that are
retained even after they have been converted back to fibroblasts®.
Similarly, the reprogramming of aged stem cells to a pluripotent state
and back to somatic cells leads to functional rejuvenation®, but not if
done by direct lineage conversion®. These experiments collectively
provided evidence that the epigenetic age of a cell has plasticity and
canbereset, independent of mutations, and catalyzed research efforts
torejuvenate cells by epigenetic reprogramming without them losing
cellularidentity (Table1).

Types of epigenetic information loss during aging
The epigenome, functioning as a digital-analog system, inherently
possesses a relatively high degree of instability, exacerbated by envi-
ronmentalinfluences, such as the passage of time, nutrient availability
and adverse conditions. The ITOA is fundamentally grounded in the
notion of progressive loss of epigenetic information over time. Like
the introduction of genetic noise in the form of mutations, there are
multiple ways epigenetic noise can beintroduced as epimutations that
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Table 1| Examples of epigenetic information loss being recovered by epigenetic reprogramming

Epigenetic factor  Epigenetic function Change Intervention Intervention Context Experiment type
during aging outcome
Histone level Nucleosome assembly Decrease OSK Increase Fibroblasts isolated from In vitro
old mice"
Lamin B1 Lamina-associated domain Decrease OSK Increase Fibroblasts isolated from In vitro
formation old mice"
HP1y Heterochromatin maintenance Decrease OSKMLN Increase Fibroblasts and endothelial cells In vitro
from aged humans'®
OSK Increase Kidney of epigenetically aged In vivo
mouse'”
. . OSKM Increase Progeroid fibroblasts, kidney and In vitro and in vivo
Heterochromatin maintenance, .
H3K9me3 transcrintional silencin Decrease spleen (mouse), high-passage
P 9 fibroblasts (mouse, human)'®
OSKMLN Increase Fibroblasts and endothelial cells In vitro
from aged humans'"®
H4K20me3 Heterochromatin maintenance, Increase OSKM Decrease Progeroid fibroblasts, kidney and In vitro and in vivo
transcriptional silencing spleen (mouse)'®®
OSK Decrease RGCs of old mice", or of young In vivo
mice after injury
DNA methylation . ) OSKM Decrease Pancreas and liver', skin and In vivo
clock (and Biological age Increase ki m
. idney
transcriptome)
OSKMLN Decrease Fibroblasts and endothelial cells In vitro

from aged humans™®

OSKMLN denotes OCT4, SOX2, KLF4, MYC, LIN28 and Nanog.

alter transcription factor binding, chromatin structure, RNA-DNA
hybrids, histone modifications and DNA methylation.

Transcription factor dysregulation

Transcription factors that bind to specific DNA sequences (and their
associated proteins and RNAs) establish cell identity during embryo-
genesis, locking in cell-type-specific transcriptional profiles during
the early life of the organism. Over time, some of the most universal
changes seen across species are modifications, proteolytic degrada-
tionand dysregulation of transcription factors. For example, the HOXA
locus, comprising 13 transcription factors that control body polarity
during development, is dysregulated during aging in mammals due
to changes in histone acetylation, histone methylation and a loss of
long-range enhancer-promoter interactions'. Changes to transcrip-
tion factor binding efficiency are also seen during aging, asis the case
for JUN and FOXO***, Recent large-scale transcriptome profiling in
aged mouse tissues has revealed dysregulation of transcription factor
regulatory networks in a tissue-specific manner*®,

Noncoding RNAs

Noncoding RNAs (ncRNAs) establish gene expression patterns during
development. Long ncRNAs canactivate or repress gene transcription
by interacting with the enhancers or recruiting chromatin modifiers
to their target sites to remodel the chromatin state®. Another major
type of ncRNAs, known as microRNAs, predominantly suppresses
gene expression by blocking protein translation or degrading mRNA
targets®. Several aging-associated pathways, including DNA damage
responses, IGF-1signaling, sirtuin gene regulation, mTOR and mito-
chondrial signaling are controlled, in part, by ncRNAs®, suggesting
a causal role of ncRNAs in regulating the aging process. Indeed, cer-
tain microRNAs have been found to affect lifespan in Caenorhabditis
elegans, Drosophila and mammals®.. For example, overexpressing
miR-17 (ref. 62) or miR-455-3p® extends lifespan in mice. ncRNAs can
also form RNA-DNA hybrids, known as R-loops. They are generally
seen as deleterious structures that promote mutations®, but emerg-
ing data indicate they also regulate gene expression. In fission yeast,

R-loopsseemtobe triggered by an age-dependent derepression of Sir2-
mediated silencing®. Inflies, R-loops are required for the maintenance
of gene expression, neuronal function and vision during aging®. The
role of R-loops in mammalian aging, however, is poorly understood.

Alterations to chromatin structure

Chromatin is organized into functional compartments within the
nucleus to control gene expression patterns across different cell
types, known as heterochromatin and euchromatin. These compart-
ments are maintained, in part, by phase separation and the nuclear
lamina®. In 1997, two papers, one by Villeponteau and one by Imai
and Kitano, proposed that a loss of heterochromatin may underlie
aging®®®, atheory that has gained traction in recent years. In model
organisms, including yeast®, C. elegans’®, Drosophila’’* and mice”,
there is a global loss of heterochromatin during aging. Two of the
mostimportant regulators of heterochromatin are heterochromatin
protein1(HP1) and trimethylated histone H3 Lys9 (H3K9me3), both
of which decline during aging in multiple species™, leading to inap-
propriate relaxing of chromatin and the ectopic expression of genes
that confer other cell types. In mammals, an age-dependent loss of
heterochromatin also relieves silencing at repetitive elements such as
retrotransposons’>”>”* and endogenous retroviral elements”, trigger-
ing aninflammatory response. The loss of cell identity during aging
may be due, in part, to the reduced expression of nuclear lamin B1
(ref.78) and the accumulation of truncated lamin A”’, as well as com-
promised lamina-associated domains that are essential for stabilizing
chromatin®. Other possible causes include DNA damage-induced
movement of the chromatin-associated proteins SIRT1, SIRT6 and
Polycomb repressive complexes® away from developmental genes
and other RCM hotspots™.

Changes to the epigenome during aging are not just at the gene
level. Long-range enhancer-promoter interactions, facilitated by
chromatinlooping andinsulated by topologically associating domains
(TADs), change with age®, as the distinction between silent and active
compartments is progressively lost®>. Why TADs and chromatin com-
partmentalization patterns change over timeis unclear, but candidate
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sources include DNA breaks, changes in acetylated histone H3 Lys27
(H3K27ac) patterns', and reduced levels of TAD boundary anchor
proteins CTCF and cohesin®#*, Notably, chromatin changes during
agingarenot limited to heterochromatin, but canalso occurineuchro-
matin, decreasing global chromatin accessibility and smoothening the
epigenetic landscape®.

Histone modifications and abundance

Histone-modifying enzymes decorate histone proteins with over
100 types of chemical groups®®. The two most abundant modifica-
tions are histone methylation (me) and acetylation (ac). H3K9me3,
H3K27me3 and H4K20me2 are associated with silent genes, and
H3K4me3 and H4K16ac are associated with active genes. In yeast¥,
worms’®, mouse quiescent stem cells®® and replicatively senescent
human cells®, increased transcription across the genome occursasa
result of adecline in the abundance of histone proteins during aging.
Inparallel, the heterochromatin mark H3K9me3 and its corresponding
methyltransferase, SUV39H]1, also decline inabundance over time™ 7%,
Levels of H3K27me3, H3K4me3, H3K36me3, H4K20me3, H3K56Ac
and H4K16ac also undergo changes, the directions of which are tissue
dependent”* Consistent with histone alterations driving the aging
process, increasing the expression of histones extends yeast replica-
tivelifespan®, and changing the abundance of specific histone marks
by manipulating the levels of histone ‘writers’ and ‘erasers’ extends
lifespan in both yeast and worms”*>%*,

DNA modifications
As astable epigenetic mark, DNA methylation has a vital rolein estab-
lishing epigenetic landscapes and defining cell identity during and
after development. Recent studies have revealed that DNA methylation
patterns change during aging in predictable ways. The most common
DNA modificationin mammalsis 5-methylcytosine (SmC) at CpG dinu-
cleotides. In mice and humans, there is a global decline in DNA 5mC*
and anincrease in DNA 5mC at a subset of CpGs, including Polycomb-
group protein targets and bivalent promoters®. These bidirectional
changes in methylation and demethylation during aging serve as the
basis for using DNA methylation profiles as abiomarker of aging.
The use of DNA methylation to predict age was first achieved
in specific cell and tissue types, including human saliva® and blood
samples’. DNA methylation patterns were thenidentified as a universal
biomarker of aging across different tissues within anindividual, often
referred toas ‘Horvath clocks™. Although clocks were originally based
on chronological age, they can also serve as markers of biological age
that predict health and future lifespan®. DNA methylation clocks have
been developed for dozens of species including mice'”, dogs'”', naked

mole rats'%, rats, bats, sheep and humans?®. The fact that the same

clocks canbe used on diverse mammalian species®and that age rever-
sal via epigenetic reprogramming requires active DNA methylationin
mouse and human cells" indicates that epigenetic information loss at
the level of DNA methylation may not simply be a marker of aging but
acontributor to the aging process.

Epigenetic reprogramming to reverse age-related
informationloss
AccordingtotheITOA, cellular reprogrammingis anormal biological
process that allows tissues to regenerate after injury, inflammation
or aging. We have previously compared epigenetic rejuvenation by
partial reprogrammingto the polishing of scratched compact discs to
access thedigitalinformation or thereinstallation of software torevive
anold computer’, a concept that has been adapted and expanded'®.
Although the Yamanaka reprogramming factors were first dis-
coveredin2006, it was not obvious that they could be used to reverse
aging in a safe manner. OSKM reprogramming of adult somatic cells
into iPSCs allows for an aged epigenome to be reset to age zero™, but
this involves the complete resetting of the epigenome and the loss of
cellular identity, leading to runaway cell growth and cancer. When
reprogramming was first attempted in mice, the loss of cell identity
resulted in teratomas and rapid death'®*. But by transiently expressing
Yamanaka factors for afew days, or by turning on only asubset of them,
typically OSK, itis possible to partially reset the epigenome and imbue
tissues with youthful capacities without cellidentity being lost (Table 1).
The first successful experiment to show rejuvenation by in vivo
reprogramming was carried out by the Belmonte group in a strain of
mouse carryingaloss-of-function mutationinthe Lmna gene that mod-
eled Hutchison-Gilford syndrome, a progeria'®. When the genetically
integrated OSKM cassette was induced for over aweek, the mice either
died, ostensibly owing to hepatic and intestinal failure'°®, or, with a
longer exposure, developed teratomas'**. However, when OSKM was
induced cyclically for only 2 days in a week, symptoms of the disease
were alleviated in multiple organs and the mice lived 40% longer'®. A
later study showed that even when OSKMis only induced for two and half
weeks early inlife, the progeroid mice still live longer, albeit only 15%%.
A parallel effort by our laboratory to understand whether lost
epigeneticinformation could be recovered torestoretissue functionin
old cellswasbased onaninducible adeno-associated virus (AAV) system
developedto express only three of the Yamanaka factors, OSK, exclud-
ing the Myc oncogene'. Overexpression of OSK in human neurons pro-
tected them from cell deathina DNA demethylase-dependent manner,
and when expressed in old mouse fibroblasts, they restored youthful
gene expression patterns (Table 1). Importantly, overexpression of

Fig.3| Therejuvenation of old and damaged cells via epigenetic
reprogramming. a, Epigenetic reprogramming reverses age- and injury-related
cellidentity loss. The ITOA states that stressors such as cellular injury, infection
and DNA breaks cause chromatin modifiers to relocalize and expedite the loss
of epigeneticinformation, leading to age-related tissue dysfunction'®", Aging
progresses from pluripotent cells to young, functional tissues, to damaged
plastic states, old non-plastic states, and eventually senescence (top). At the
molecular level, epigenetic changes during aging contribute to anincrease in
epigenetic age and aloss of cell identity and function (lower). Physical injury
toretinal neurons is also known to increase DNA methylation age and aloss of
cellular identity leading to a loss of function (orange circle, line graph)". Similar
effects occur with exposure to chemotherapy", elevated pressure’ or maybe
even loud noises"*. Recoverable injuries such as surgery and severe coronavirus
disease 2019, temporarily accelerate DNA methylation age, but over time, aging
effects become locked in (green circle, line graph)'*’. b, Epigenetic rejuvenation
may mediate natural tissue and organ regeneration. The ITOA posits that
epigenetic rejuvenation is a normal biological process that allows tissues to
recover frominjury or degeneration. Hydra and planarians can regenerate body
parts and have an extremely slow or nonexistent pace of aging*>'*¢, zebrafish can

regrow fins, heartand kidney throughout their lives™*’, and axolotls, a species of
salamander, can replace complex body parts such as limbs at any age’**. Among
mammals, mice can regrow toe tips"’, and African spiny mice can regenerate a
variety of tissues'**'*' and their cells are protected from cellular senescence'*>'®>,
Evenin humans, aresected human liver canregenerate to its original shape and
size'**. Itis likely that certain cells of these regenerative species naturally retain
the ability to rejuvenate by expressing pluripotency factors or somatic cells can
turn on factors capable of inducing epigenetic rejuvenation, allowing them to
remain epigenetically young, similar to human embryonic stem cells and iPSCs*®,
whereas non-regenerative species have lost this ability and require ectopically
expressing the pluripotency factors toinitiate this process of rejuvenation and
regeneration. In planarians, Oct4 targets are necessary for stem cell ‘neoblasts’
toregenerate body parts'® and homologs of Oct4, Sox2, KIf4 and Nanog are
expressed throughout regenerating tissue''®. The transcription factor MSX1,
whichis highly expressed in regenerating limb blastemas of axolotls, can
partially restore youthful gene expression in mouse myogenic cells"’, and
STAT3, atranscription factor rapidly induced during liver regeneration,
promotes a youthful epigenetic state in human chondrocytes partially through
repressing DNMT3B'%°,
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OSK systemically in mice via AAV9 for up to 18 months did notincrease
tumor incidence or cause negative effects on overall health. When
expressed in old postmitotic retinal ganglion cells (RGCs), transcrip-
tionand DNA methylation signatures were restored toa more youthful
state, independent of cell proliferation, allowing the RGCs to regen-
erate axons and improve visual function in old and glaucomatous
mice, an effect that was not seen with overexpression of one or two
Yamanaka factors or the Tet1 DNA demethylase alone'. Continuous
OSK expressioninthe RGCs of glaucomatous mice provided year-long
improved visual function without any obvious detrimental effects'”".
To our knowledge, this is currently the only in vivo epigenetic rejuve-
nation method capable of resetting both the transcriptome and DNA
methylometo promote along-term functional recovery, while avoiding
runaway cellular proliferation, toxicity or risk of cancer, evenwhen the
genes are expressed continuously. Since our original findings in 2020,
the same AAV-OSK system has been used in other disease models and
species. For example, AAV-OSK has extended the remaining lifespan
of 2-year-old mice by 109%; it has also reduced vision loss in a mouse
model of multiple sclerosis'®® and improved vision in a nonhuman
primate model of non-arteritic anterior ischemic optic neuropathy'®.

Impressively, OSK and OSKM have been shown to restore youthful
transcription profiles and promote the regeneration of multiple cell
typesandtissues. Inaged adipocytes and mesenchymal stem cells, for
example, single or dual factors have little to no rejuvenation effect, but
combining three of four Yamanaka factors, including OSK, canrestore
the transcriptome to a more youthful pattern'’. Organs that have
now been rejuvenated by OSK(M) reprogramming include kidney'*'™",
liver"™', skin'", heart™, brain'” and pancreas and muscle'>'%"617, A
reversal of age-related changes to histone modificationsis also seen
Inaddition, theintramuscular injection of DNA plasmid carrying OSKM
increases the regeneration of damaged muscle and reduced fibrosis
without causing dysplasia or tumorigenesis'’. Similarly, the introduc-
tionof OSKM mRNA into aged human fibroblasts and endothelial cells,
plus two other stem cell factors, LIN28 and NANOG, recovers levels of
HP1ly and H3K9me3 and reverses the DNA methylation clock™ (Table 1).

The question of why OSK(M) expression seemingly works uni-
versally to improve regeneration in multiple species and in different
tissues with distinct gene expression patternsis anintriguing one. An
aspectoftheITOA s thatepigenetic rejuvenationis anatural,inherent
biological process that exists to allow tissues to recover and regenerate
afterinjury (Fig. 3a). Consistent with this, 0CT4,SOX2,KLF4 and Nanog
areinvolvedin planarianbody regeneration, regulate pro-longevity
genes among 26 species’’ and are enriched in the blood mononuclear
cells of centenarians™. The ability of a species to regenerate and reju-
venate probably depends on how advantageous it has been for the
species’ survival. Species with high rates of predation may benefit
more than those that are less likely to be fatally injured (Fig. 3b). The
ultimate size and shape of the rejuvenated tissue is probably depend-
entonaninterplay between the OSK program, chemical gradients and
bioelectrical signaling between cells™. Evidence thatinjury accelerates
aging came unexpectedly from our studies of the mouse eye, where
nerve crush altered DNA methylation patterns in a way that mirrored
accelerated aging". OSK induction counteracted this effect, providing
amolecular explanation for how epigenetic reprogramming robustly
improvestissue functioninboth aging and injury. Importantly, the DNA
demethylases TET1and TET2 were required for OSK to both regener-
ate neurons after injury and restore vision in aged mice, indicating
that rewriting the DNA methylome is necessary for the epigenetic
information recovery from both damaged and old states. Thus, pre-
venting DNA hypermethylation during injury through inhibition of
DNMTs may alleviate tissue damage and improve repair. For example,
DNMT3a inhibition reactivates the regeneration potential of RGCs'?,
and protects against noise-induced hearing loss'*%. Uncovering the
mechanisms by which natural regeneration occurs, while testing the
factors involved, may suggest novel rejuvenation interventions and

105

lead to breakthroughs in medicines to safely treat injuries, diseases
and agingitself (Fig. 3b).

The next frontier: secretory factor and chemical rejuvenation
Traditionally, epigenetic reprogramming factors, including OCT4,
SOX2and KLF4, are delivered to specific tissues via viral vectors. How-
ever, widespread rejuvenation across the entire body is limited by viral
tropism. For example, most AAVs deliver their DNA cargointo the liver
and much less into muscle, brain and testes. Thus, secretory factors
and chemicals possess aninherent advantage because they canreach
multiple tissues via the bloodstream and far more evenly.

The ability of parabiosis or young blood plasma transfusion to
reduce DNA methylation age'*'** suggests that there may be secretory
factors or exosomes that can induce epigenetic rejuvenation. Some
blood factorshavebeenreportedtoslow or reverse specific aspects of
agingintissues, such as GDF15'*, eNAMPT'*, Klotho'* and clusterin'*,
Although it remains unknown whether these factors function at least
partly via an epigenetic mechanism, one recent study reported that
SOX2 and MYC or OCT4 can be replaced by secreted and membrane-
bound antibodies'’, serving as an example of how extracellular pro-
teins might be used to rejuvenate tissues.

Using small molecules for reprogramming is also a promising
strategy because of their ease of delivery, low cost and cell permeabil-
ity. Chemical cocktails containing components that target epigenetic
modulators, such asthe HDACinhibitor valproicacid, the LSD1inhibi-
tor tranylcypromine and the GSK-3f inhibitor CHIR-99021, caninitiate
a step-wise process converting mouse and human fibroblasts into
iPSCs™%"!, Although some toxicity existsin adult cells, it appears that
short exposures to these chemical cocktails can partially restore age-
related epigenetic changes without losing cell identity or causing the
runaway cell growth seen with iPSCs"**"** and can extend the lifespan of
C.elegans™*. Boosters thatincrease iPSC efficiency, including sodium
butyrate and a-ketoglutarate, show an additive rejuvenation effect and
reverse transcriptional age, while maintaining cell identity'*. Interest-
ingly, a-ketoglutarate is a TET co-substrate that extends the lifespan
of worms and mice*>"*° and reverses the blood DNA methylation clock
in humans', echoing the involvement of TETs during OSK-mediated
rejuvenation. Other potential candidates for rejuvenating chemicals
include trichostatin A, suberoylanilide hydroxamic acid”®, vitamin
C (a histone demethylase KDM6B activator) and DNMT inhibitors
5-azazcytidine and RG108 (ref. 122).

The mechanisms of epigenetic rejuvenation

The ITOA posits that there is a backup copy of youthful information
storedinevery cell, akin to Shannon’s ‘observer’. This store of original
epigenetic information may be accessed in aged or damaged adult
cellstorecover lost epigenetic information, promote resilience and
healing and restore youthful functions (Fig.1). Results from our labo-
ratory and others indicate that this backup information may indeed
exist. One of the most remarkable facts about partial epigenetic
reprogramming is it is possible to safely reset gene expression pat-
terns toyears earlier>""°, targeting not only the correct locibut also
the direction and fold-change. In the case of old RGCs,for example,
the induction of OSK restores 90% of the aging-altered genes back
to youthful levels". Two key questions remain to be answered: how
this backup information is being accessed, and by what mechanism
itisrecorded and stored.

Clues to how it is accessed have come from epigenetic repro-
gramming studies. A process that is critical for both iPSC formation
and somatic cell cloning is DNA demethylation**°, carried out by
the DNA demethylases TET1-TET3 and the DNA glycosylase TDG*.
Increasing evidence supports an important role for DNA demethyla-
tionin therejuvenation process as well. Forexample, we find that OSK-
mediated rejuvenation of postmitotic RGCs requires TET1, TET2 and
TDG". Similarly, restoring TET2 in the adult hippocampal neurogenic
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BOX2

A hypothetical working model of the repository of youthful

epigenetic information

Inspired by Shannon’s ‘information theory of communication’ from
the 1940s, we hypothesize there is a biological ‘observer’ storing
youthful epigenetic information even in old cells®. One type of
observer is passive, and the other is active (as illustrated). The passive
observers mark DNA early and stay inactive during reprogramming,
whereas the active observers mark DNA regions altered during aging
and interact with master regulators and epigenetic modifiers during
reprogramming.

Passive observers act as barriers during rejuvenation, marking
specific regions as inaccessible to the reprogramming machinery.
Possible forms of passive information storage include DNA
modifications and DNA segments rich in CpG dinucleotides. Genes
with CpG islands in their promoters typically have widespread
expression and show consistent expression levels throughout aging
(non-differentially expressed genes; non-DEGs)'®. By contrast,
developmental genes at shores of CpG islands'® or lacking CpG
islands’®’ are more susceptible to disrupted heterochromatin formation
during aging, leading to global dysregulation in aged cells and tissues
(differentially expressed genes (DEGs) in aging; arrow width represents
transcription frequency). QSER1, which interacts with TET1and
prevents de novo methylation at bivalent promoters, could also act as
a passive observer safeguarding transcriptional and developmental
networks™®. We imagine that enhancers linked to cellular identity
genes contain passive observers and stay hypomethylated, allowing
old cells to regain their identity efficiently'*.

Active observers mark the youthful state of genes early in life. They
may also mark genes that have changed their expression over time.
Potential modalities of information storage include DNA-RNA hybrids
such as R-loops, DNA modifications, protein-DNA interactions and
histone modifications. H3K27me3, a product of the PRC2 complex,
probably serves as part of an active observer system, being enriched
at bivalent promoters of developmental genes'®*® and methylation
clock sites?"*° that become dysregulated over time. H3K27me3 may
facilitate rejuvenation by recruiting PRC2 and TETs to specific loci".
Supporting this, the CpG sites altered during aging and reset by OSK
in RGCs possess an enrichment of PRC2 binding sites and H3K27me3
(ref. 11). In addition, PRC2 binding regions account for most age-
dependent DNA methylation gain, making them age predictors'.

We envision that master regulators OCT4, SOX2 and potentially

niche can counteract an age-related decline in neurogenesis and
restore cognition in mice'*?. TDG also contributes to cellular identity
reestablishment through its function at neuronal lineage-specific
enhancers'”. Additionally, DNA methylation by DNMTs can also have
aroleinrejuvenation. Inthe aged pancreas, forexample, partial repro-
gramming re-methylates a similar number of CpGs as those that are
demethylated'?, and in human fibroblasts, the promoter region of an
embryonic development gene (/RX5) gets demethylated during aging
and re-methylated by partial reprogramming'**.

The DNA methylation-demethylation machinery is believed
to require master regulators to guide them to specific sites on the
genome'. It seems likely that pioneer transcription factors OSK(M)
activate other master regulators during the rejuvenation process
(Box 2), including the embryonic regulator PRC2, which associates
with RNAs and DNA sequences that are known to be differentially

Young

g (AN
old l Epigenetic noise

g A
Partially reprogrammed F ; l OSK(M)

v e |
Rejuvenated

Tl | qn |

Non-DEGs in aging DEGs in aging

Lead candidates

Passive observer CpG island, QSER1, RNAs

I Active observer H3K27me3, H3k9me3
J Master regulator OCT4, SOX2, PRC2 complex, TOP2a
Y TETs, TDG, DNMTs, KDM6B
Markers 5mC, histone modifications, RNAs

PRC2 and TOP2A, bind to regions marked by active observers such

as H3K27me3, H3K9me or DNA:RNA hybrids®®, recruiting epigenetic
modifiers like TETs, TDG, DNMTs and KDM6B to reset DNA methylation
and histone modifications.

methylated during rejuvenation®. Another candidate is TOP2A, a
crucial regulator of the epigenome that is highly induced by Yamanaka
factors and necessary for TET1 upregulation and in vivo reprogram-
ming of liver'™.

In our view, the most important question in the field is when and
where youthfulepigeneticinformationisrecorded and stored, allowing
insome cases for areset decades later. Although the precise physical
nature of the biological information back-up, or the ‘observer’, remains
elusive, we hypothesize that the information storage mechanism may
require passive observersthat protect essential genes and the enhancer
regions of cell identity genes, alongside active observers that record
youthful epigenetic status and mark regions experiencing epigenetic
alterations during aging (Box 2). In one model, only active observers
engage with the rejuvenation machinery, composed of master regula-
tors and epigenetic modifiers, to reset the epigenetic landscape and
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transcription machinery. Potential forms of youthful information
storageinclude DNA-RNA hybrids such as R-loops, DNA modifications,
protein-DNA interactions and histone modifications. Although this
initialmodel of the repository of youthful epigeneticinformation will
besubject torefinement with emerging data, it offers afoundation for
elucidating rejuvenation’s biological mechanisms.

Conclusions and future directions

According to theITOA, the progressive deterioration of organismal
function culminatingin mortality, the process we call ‘aging’, is primar-
ily attributed to the gradual loss of information established during
development.

There are anumber of predictions the ITOA makes, the testing of
whichwillhelp tosupportor refute the theory. Anincreasing number of
studiesindicate that dysregulation of developmental pathways and loss
of cellidentity are common occurrencesin mammalian aging. Inaging
human brain tissue, for example, there is a general upregulation and
alteration of CpG methylation near developmental genes®>'*. As our
mouse model withinducible epigenetic changes showed, developmen-
tal genes are hotspots for epigenetic changes during aging, including
those caused by DSBs'’. We suggested this might occur because devel-
opmental genes are activated as part of the RCM response when cells
aredamaged, as away to temporarily increase cell repair and survival.
This on-and-off cycling makes them more susceptible to epigenetic
changes over time. A recentinterpretation of these findings that aging
is aprogrammed extension of development'®, a proposition thatisin
alignment with a recent analysis showing that developmental genes
are hotspots for DNA methylation changes?. If so, then enhancing DNA
DSB repair would be unlikely to affect the rate of epigenetic aging or
lifespan. Yet, long-lived species have more efficient DSB repair* and
overexpression of Sirt6, a DSB repair factor, makes mice live longer,
arguing that DSBrepairis a part of the normal aging process and aging
is not simply an extension of development®. The ITOA predicts that
reducing other types of cellular damage that alter the epigenome will
also lead to lifespan extension.

Targeting the epigenome alone has demonstrated an impres-
sive capacity to reverse various aging hallmarks, including genomic
instability and epigenetic alterations™'®, mitochondrial and lysosome
dysfunction™, inflammation™® and deregulated nutrient sensing'. If
the ITOA proves correct, in vivo epigenetic reprogramming might also
be capable of reversing recently nominated aging hallmarks, such as
dysbiosis and impaired macroautophagy?.

ThelTOA also predicts thereisastructure or molecule within cells
thatretainsamemory of an earlier state of the epigenome. Finding this
backup copy, which we are calling the biological observer, will lend con-
siderable support for the theory and greatly speed up development of
waysto control biological age. Finding the putative observer could be
achieved by genetic screening or by studying animals that caninnately
reverseagingsignatures, suchas flatworms andjellyfish. Unraveling the
nature of the observer would not only address alongstanding question
in biology, but also contribute to the development of more accurate
and efficacious approaches for rejuvenating epigenomes and restoring
youthful functions of tissues.

Reversing aging in a single organ can provide benefits for tissue-
specific diseases but may not result in substantial increasesin lifespan.
It will be crucial to establish efficient delivery methods tointroduce the
necessary genetic material for in vivo cell reprogramming or identify
chemical compounds or cocktails capable of achieving similar out-
comes without causing cell dysfunction, death or cancer.

It is also important that research in the field develops more pre-
cise, reproducible and well-accepted methods for assessing aging and
calculating biological age. Presently, there are several aging clocks
available. None, however, offer a comprehensive assessment of the
entire individual and many necessitate taking blood or biopsies, pos-
ing limitations to their widespread applicationin animal researchand

clinical trials. Better clocks will help determine the optimal timing for
implementing reprogramming interventions and evaluating their
effectiveness in patients. Although clock readouts are informative,
ultimately rejuvenation should only be declared when the function of
acell, tissue or individual is restored.

Substantial strides in our ability to control aging have been
achievedinrecent years, and the discovery of alternative approaches
to rejuvenate tissues will undoubtedly accelerate the use of in vivo
reprogramming outside the laboratory and in human clinical trials™.
Strategies such as functional genomic screening and comprehensive
analysis of established rejuvenation methods like parabiosis, chemi-
calreprogramming and tissue and limb regeneration, offer promising
avenues for identifying novel reprogramming techniques. Combined
with the ability to screen trillions of compounds and combinationsin
silico using artificial intelligence, these advances hold great promise
foradvancing our understanding of why and how we age, and the appli-
cationofrejuvenation therapies totreatinjuries, age-related diseases
and ultimately aging itself.
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